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The stochastic finite-time boundedness (FTB) problem is considered for a class of Markovian jumping

neural networks (MJNNs) with time delay and uncertainties. By selecting the appropriate stochastic

Lyapunov–Krasovskii functional, sufficient conditions of stochastic FTB of MJNNs are presented and

proved. The FTB criteria are formulated in the form of linear matrix inequalities. Simulation results
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1. Introduction

Since neural networks have been extensively studied in various
aspects and successfully applied to various fields such as associative
memories, pattern recognition, signal processing, fixed-point com-
putations and optimization problems, it is necessary to point out
that these applications are mostly built upon the stability of the
equilibrium point of neural networks. For instance, when a neural
network is applied as an optimization solver, the equilibrium points
of the neural network characterize possible optimal solutions of the
optimization problem, and starting from any initial condition, the
global asymptotic stability ensures the convergence to an optimal
solution. Therefore, the stability analysis is essential for the design
of neural networks and then has been extensively investigated for
researchers [1–4].

On another research front, time delays are frequently encoun-
tered in neural networks due to the finite switching speed of
information processing and the inherent communication of neurons.
The existence of time delays may cause divergence, oscillation, and
even instability in dynamic systems and usually leads to unsatisfac-
tory performances. Therefore, the problems of stability analysis of
neural networks with time delays have been of considerable interest
and in particular robust Lyapunov stability problem has received
ll rights reserved.
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more consideration. For more results on this topic, we refer readers
to [5–11] and the references therein. In general, Lyapunov stability is
used to deal with the asymptotic pattern of system trajectories and
the steady-state behaviors of control systems over an infinite-time
interval. But in many practical applications, the main attentions are
related to the behavior of dynamical systems over a fixed finite time
interval, for instance, large values of the state are not acceptable in
the presence of saturations. Therefore, we generally need to ensure
that these state values are allowable by giving some initial condi-
tions. In view of this, the finite-time stability (or short-time stability)
referring to these transient performances is proposed during the
1960s [12,13]. It means that once we fix a finite-time interval, the
state of a system does not exceed a certain bound during this
specified time interval. Some attempts on finite-time stability can be
found in [14–16] by using Lyapunov functional approach. Then,
with the aid of linear matrix inequalities (LMIs) techniques, more
concepts of finite-time stability have been proposed for linear
continuous-time or discrete-time control system, such as finite-
time boundedness (FTB), finite-time stabilization etc. Many authors
have made some attempts in this regard, for instance, [17–25] and
the references therein. But to the best of our knowledge, the robust
FTB problems for Markovian jumping neural networks (MJNNs)
with time-delays and uncertainties have not been intensively
studied. This has motivated our research on this topic.

In this paper, we deal with the stochastic finite-time bounded-
ness (FTB) problems for a class of MJNNs with time-delays and
uncertain parameters. Difference with the main results in [29,30],
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the sufficient conditions of this paper are identified to guarantee
solutions to stochastic boundedness via finite-time interval for such
stochastic neural networks. The stochastic Lyapunov–Krasovskii
functionals and the LMIs approaches are combined to investigate
the problem and to derive the FTB criteria. Distinct from previous
investigations, the current study focuses on the stochastic bounded-
ness via the finite-time interval for MJNNs with constant or time-
varying delays. The main advantages of the present approach
include: (i) it needs no turning of parameters and/or matrices;
(ii) it can be efficiently verified via solving numerically the LMI
algorithms. It is noted that the results in Theorem 1 for FTB requires
that the derivative of the time-varying delay be less than one, and
such assumptions are often needed to deal with the stability
problem of time-varying delayed neural networks in many other
research papers [2,5,8]. Finally, a numerical simulation is included to
illustrate the effectiveness of the developed techniques.

The rest of this paper is organized as follows. In Section 2, the
problem to be studied is stated and some definitions and assump-
tions are presented. Based on the stochastic Lyapunov–Krasovskii
stability theory, in combination with the LMIs approach, the
stochastic FTB criteria for MJNNs with time-varying constant delays
are then derived in Section 3, and the relevant results are also
obtained for constant time delayed MJNNs. In Section 4, a numerical
simulation is included to illustrate the effectiveness of the devel-
oped techniques. Finally, some conclusions are given in Section 5.

Throughout this paper, we use the following notations: Rn and
Rn�m stand for an n-dimensional Euclidean space and the set of
all n�m real matrices, respectively; AT and A�1 denote the matrix
transpose and matrix inverse; diagA B represents the block-
diagonal matrix of A and B; lmaxðPÞ and lminðPÞ denote the
maximal and minimal eigenvalue of a positive-define matrix P;
:n: denotes the Euclidean norm of vectors; E{* } denotes the
mathematics statistical expectation of the stochastic process or
vector; Ln

2 0 1ð Þ is the space of n dimensional square integrable
function vector over 0 1ð Þ; Po0 or P40 means matrix P is
negative-definite or positive-definite; I and 0 are respectively the
unit and the zero matrices with appropriate dimensions; ‘‘n’’
means the symmetric terms in a symmetric matrix.
2. System formulation

Given a probability space (O,F,Pr) where O is the sample space,
F is the algebra of events and Pr is the probability measure defined
on F, let us consider the following uncertain neural networks with
Markovian jumping parameters in a fixed complete probability
space (O,F,Pr) described by a nonlinear differential equation:

_dðtÞ ¼�½A rtð ÞþDA rtð Þ�dðtÞþ½B rtð ÞþDB rtð Þ�h t,dðtð ÞÞ

þ½C rtð ÞþDC rtð Þ�h t,d t�tðtð ÞÞÞþWð ð1Þ

where dðtÞ ¼ ½d1ðtÞ d2ðtÞ � � � dnðtÞ�
T ARn is the state vector

associated with n neurons, A rtð Þ ¼ diag a1 rtð Þ a2 rtð Þ � � �
�

an rtð ÞÞ is the known mode-dependent diagonal matrices with
positive entries ai(rt)40, i¼ 1,2, � � � ,n. The mode-dependent
matrices B(rt) and C(rt) are, respectively, the connection weight
matrix and the delayed connection weight matrix. h t,d tð Þð Þ ¼

½h1 t,dðtð ÞÞ h2 t,dðtð ÞÞ � � � hn t,dðtð ÞÞ � is the neuron activation
function, and W ¼ W1 W2 � � � Wn

� �T
is a constant external

input vector. For presentation convenience, when rt¼ i,iAM, we
denote A(rt), DA(rt), B(rt), DB(rt), C(rt), DC(rt) as Ai, DAi, Bi, DBi, Ci,
DCi. t(t) is the time-varying delay which satisfies

0rtðtÞot
0r _tðtÞo1

(
ð2Þ

where t is a constant scalar.
The uncertain parameters DAi, DBi, DCi are time-varying but
norm bounded, and satisfy,

DAi DBi DCi

h i
¼MiGi tð Þ N1i N2i N3i

� �
ð3Þ

where Mi, N1i, N2i, N3i, are known mode-dependent matrices with
appropriate dimensions and Gi( t) is the time-varying unknown
matrix function with Lebesgue norm measurable elements satisfying

GT
i ðtÞGiðtÞr I ð4Þ

in which I is the identity matrix of appropriate dimension.

Remark 1. The uncertain parameters DAi, DBi, DCi are said to be
admissible if conditions (3) and (4) hold. The mode-dependent
matrix Mi is always chosen as a full row rank one. We always
consider these uncertainties; that is because it is usually difficult to
obtain the exact mathematical model of real plants due to process
complexity, environmental noises, time-varying characteristics and
difficulties in measuring various kinds of uncertain parameters, etc.
In fact, the uncertainties described in (3) have been widely used in
the schemes of stochastic robust stability of uncertain neural
networks, see [8,26,27] and the references therein. We can also
represent these uncertainties as state-dependent on, i.e., Gi( t)¼
Gi( t, x(t)), as long as GT

i t,xðtð ÞÞGi t,xðtð ÞÞr I is satisfied. Without
these uncertainties, i.e., DAi�0, DBi�0, DCi�0, the time-delayed
MJNNs (1) is labeled as a nominal one.

The jump parameter rt¼ i in MJNNs (1) represents a
continuous-time discrete-state Markovian stochastic process tak-
ing values on a finite set L¼ 1,2, � � � ,N with transition rate matrix
Pr¼{Pij(t), i, jAL}, and define the following transition probabil-
ity from mode i at time t to mode j at time tþDt as

Pr rtþDt ¼ j9rt ¼ i
� �

¼
pijDtþoðDtÞ, ia j

1þpiiDtþoðDtÞ, i¼ j

(
ð5Þ

where Dt40; lim
Dt-0

oðDtÞ=ðDtÞ ¼ 0; pijZ0 is the transition probabil-
ity rate from mode i to mode j and satisfies,

XN

j ¼ 1,ja i

pij ¼�pii for i,jAL, ia j ð6Þ

Assumption 1. The neuron state-based nonlinear function h(t,
d(t)) in MJNNs (1) is bounded and satisfies:

0r
hl t,x1ð Þ�hl t,x2ð Þ

x1�x2
rBl, l¼ 1,2, � � � ,n ð7Þ

for all x1, x2AR, with Bl being known real constants with
l¼ 1,2, � � � ,n.

Then, by using the celebrated Brouwer’s fixed-pointed theorem,
on can easily prove that there exists at least one equilibrium point of
system (1). Let d * be the equilibrium point of MJNNs (1), and define
x(t)¼d(t)�dn. The time-delayed MJNNs (1) can be transformed as:

_xðtÞ ¼�AixðtÞþBif t,xðtð ÞÞþCif t,x t�tðtð ÞÞÞð ð8Þ

where

xðtÞ ¼ x1ðtÞ x2ðtÞ � � � xnðtÞ
� �T

,

f t,xðtð ÞÞ ¼ f 1 t,x1ðtð ÞÞ f 2 t,x2ðtð ÞÞ � � � f n t,xnðtð ÞÞ
h iT

,

f l t,xlðtð ÞÞ ¼ hl t,xlðtð Þþdn
Þ�hl t,dn

� �
, l¼ 1,2, � � � ,n:

and fl(0)¼0, for l¼ 1,2, � � � ,n. Note that the functions fl(U) satisfies
the following conditions:

9f l t,x1ð Þ�f l t,x2ð Þ9rkl9x1�x29

9f l t,xð Þ9rkl9x9
:

(
ð9Þ
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The main aim of this paper is to develop techniques of the
stochastic finite-time boundedness (FTB) problem of uncertain
time-delayed MJNNs (1). The idea of this concept concerns the
boundedness of the state over a finite-time interval for some
given initial conditions.

Definition 1. The nominal time-delayed MJNNs (1) (or (8)) is said
to be stochastically finite-time bounded (FTB) with respect to
c1 c2 Tð Þ, if

E:x t1ð Þ99
2rc1 ) E:x t2ð Þ:

2oc2, t1A ½�t 0�, t2A 0 T½ �: ð10Þ

Definition 2. The uncertain time-delayed MJNNs (1) (or (8)) is
said to be stochastically robustly FTB with respect to c1 c2 T

� �
,

if relation (10) holds for all the given uncertainties with form
(3) and (4).

Remark 2. If we let W¼0 in MJNNs (1), the concept of FTB
reduces to finite-time stability (FTS). It is easy to see that, given
our Definitions 1 and 2 of FTB, FTS can be recovered as a particular
case by letting W¼0. A system is FTB if, given a bound initial
condition and a characterization of the set of admissible inputs,
the system states remain below the prescribed limit for all inputs
in the bound set. It should be noted that the concepts of Lyapunov
stability and FTB are different. The former is largely known to the
control characteristic in infinite time-interval, but the latter
concerns the boundedness analysis of the controlled states within
a finite time-interval. Obviously, a stochastic FTB MJNNs may not
be Lyapunov stochastically stable and vice versa.

Definition 2. (Mao [28]) Let V(x(t),rt,t40) be a stochastic positive
functional, and define its weak infinitesimal operator as

IV x tð Þ,rt ¼ i,tð Þ ¼ lim
Dt-0

1

Dt
E V x tþDtð Þ,rtþDt ,tþDt

� �
9x tð Þ,

��
rt ¼ i�V xðtð Þ,rt ¼ i,tÞ�: ð11Þ

3. Main results

In this section, we will first study the FTB problem for nominal
time-delayed MJNNs (1).

Theorem 1. Given a time-constant T40, the nominal time-delayed
MJNNs (1) is stochastically FTB with respect to c1 c2 T

� �
, if there

exists a positive constant a40, mode-dependent symmetric
positive-definite matrices Pi40, mode-dependent diagonal matrices
Ri40, and symmetric positive-definite matrix Q40, satisfying the
following matrix inequalities for all iAL,

Si PiBi PiCi

n �RiþQ 0

n n �sQ

2
64

3
75o0 ð12Þ

c1eaT lPþtlQ kl

� 	
olP c2 ð13Þ

where

Si ¼�AT
i Pi�PiAi�

XN

j ¼ 1

pijPjþKlRiKl�aPi,

Kl ¼ diag k1 k2 � � � kn
� �

, s¼ inf
tZ0

1� _tðtð ÞÞ,

l
P
¼max

iAL
lmax Pið Þ, lQ ¼ lmaxðQ Þ, kl ¼max

l
klð Þ, lP ¼min

iAL
lmin Pið Þ:

Proof. Let the mode at time t be i; that is rt¼ iAL. Take the stochastic
Lyapunov–Krasovskii functional V((t),xt,t40):Rn

�L�Rþ-Rþ to
be

V xðtÞ,rt ¼ i,ðtÞ ¼ xT ðtÞPixðtÞþ

Z t

t�tðtÞ
f T x,xðxð ÞÞ Qf x,xðxð ÞÞdx



ð14Þ
where Pi40, Q40 are the given symmetric positive-definite
matrices.

Along the trajectories of the nominal time-delayed MJNNs (8),
the weak infinitesimal operator of the stochastic process
{x(t),rt¼ i}9tZ0 is given by

IV xðtð Þ,rt ¼ i,tÞ ¼�xT ðtÞ AT
i PiþPiAiþ

XN

j ¼ 1

pijPj

2
4

3
5

xðtÞþ2xT ðtÞPiBif t,xðtð ÞÞ

þ2xT ðtÞPiCif t,x t�tðtð ÞÞÞþ f T t,xðtð ÞÞQf t,xðtð ÞÞ

�
�½1� _tðtÞ�f T t,x t�tðtð ÞÞÞQf t,x t�tðtð ÞÞÞðð

þ
XN

j ¼ 1

pijPj

Z t

t�tðtÞ
f T x,xðxð ÞÞQf x,xðxð Þ

	
dx: ð15Þ

Let Ri40 be mode-dependent diagonal matrices. We can
rewrite the above equation as

IV xðtð Þ,rt ¼ i,tÞ ¼IV xðtð Þ,rt ¼ i,tÞþ f T t,xðtð ÞÞRif t,xðtð ÞÞ

�f T t,xðtð ÞÞRif t,xðtð ÞÞ: ð16Þ

Also, it results from (9) that

f T t,xðtð ÞÞRif t,xðtð ÞÞrxTðtÞKlRiKlxðtÞ: ð17Þ

Combining (16) and (17) with (15), we can get

IV xðtð Þ,i,tÞr$T ðtÞPi$ðtÞ ð18Þ

where $ tð Þ ¼ col xðtÞ f t,xðtð ÞÞ f t,x t�tðtð ÞÞÞ
� ��

,

Pi ¼

�AT
i Pi�PiAi�

XN

j ¼ 1

pijPjþKlRiKl PiBi PiCi

n �RiþQ 0

n n �sQ

2
66664

3
77775:

in which s¼ inf
tZ0

1� _tðtð ÞÞ. Hence, IV(x(t),i, t)o0 can be held by
Pio0.

On the other hand, it follows from inequality (13) and the
required constant a40 that

E½IV xðtð Þ,i,tÞ�raE½V xðtð Þ,i,tÞ�: ð19Þ

Multiplying (19) by e�a t, we can get

E½Ie�atV xðtð Þ,i,tÞ�raE½V xðtð Þ,i,tÞ� ð20Þ

By integrating the above inequality from 0 to t, it follows that

e�atE½V xðtð Þ,i,tÞ�rE½V x0,r0ð Þ�: ð21Þ

Note that a40, 0rtrT, we can obtain the following relation

E½xT ðtÞPixðtÞ�oE½V xðtð Þ,i,tÞ�reatE½V x0,r0ð Þ�

¼ eat½xT ð0ÞPixð0Þþ

Z 0

�tðtÞ
f T x,xðxð ÞÞQf ðx,xðxÞÞdx�

oeat½l
P
xT ð0Þxð0ÞþtlQ k

2

l max
t1 A �t 0
� � xT t1ð Þx t1ð ÞÞ�

�

oc1eaT lPþtlQ k
2

l

� 	
: ð22Þ

where lP ¼max
iAL

lmax Pið Þ, lQ ¼ lmaxðQ Þ, kl ¼max
l

klð Þ.

Similarly, we have

E½xT ðtÞPixðtÞ�ZlP E½xT ðtÞxðtÞ�rlP E:xðtÞ992
ð23Þ

where lP ¼min
iAL

lmin Pið Þ.

Then we can get

E:x tð Þ992o
c1eaT lPþtlQ k

2

l

� 	
lP

oc2 ð24Þ
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It implies by condition (14) that for 8tA 0 T
� �

,
E½:xðtÞ992

�oc2. This completes the Proof.
Besides the time-delay, parameter uncertainties are still the

inherent features of many physical processes and often encoun-
tered in engineering systems, their presences must be considered.
Before proceeding with this kind of time-delayed MJNNs with
uncertainties, the following Lemmas are needed.

Lemma 1. [29] Let T, M, F and N be real matrices of appropriate
dimension with FTFr I, then for a positive scalar a40, it holds

TþMFNþNT FT MT rTþa�1MMT
þaNT N ð25Þ

Theorem 2. Given a time-constant T40, the uncertain time-
delayed MJNNs (1) is stochastically robustly FTB with respect to

c1 c2 T
� �

, if there exists a positive constant a40, a mode-
dependent symmetric positive-definite matrix Pi40, a mode-
dependent diagonal matrix Ri40, symmetric positive-definite
matrix Q40, and mode-dependent scalars bi40, satisfying rela-
tion (13) and the following matrix inequality for all iAL,

S2i PiBi�biN
T
1iN2i PiCi�biN

T
1iN3i PiMi

n �RiþQþbiN
T
2iN2i biN

T
2iN3i 0

n n �sQþbiN
T
3iN3i 0

n n n �biI

2
666664

3
777775 ð26Þ

where

Si ¼�AT
i Pi�PiAi�

XN

j ¼ 1

pijPjþKlRiKlþbiN
T
1iN1i�aPi,

Kl ¼ diag k1 k2 � � � kn
� �

, s¼ inf
tZ0

1� _tðtð Þ

�
:

Proof. Take the same stochastic Lyapunov–Krasovskii functional
as in the proof of Theorem 1, and along the trajectories of the
uncertain time-delayed MJNNs (8), the weak infinitesimal opera-
tor of the stochastic process {x(t),rt¼ i}9tZ0is given by

IV x tð Þ,rt ¼ i,ðtÞ ¼ �xT ðtÞ AiþDAið Þ
T PiþPi AiþDAið Þþ

XN

j ¼ 1

pijPj

2
4

3
5xðtÞ

0
@
þ2xT ðtÞPi BiþDBið Þf t,xðtð ÞÞþ2xT ðtÞPi CiþDCið Þf t,x t�tðtð ÞÞÞð

þ f T t,xðtð ÞÞQf t,xðtð ÞÞ�½1� _tðtÞ�f T t,x t�tðtð ÞÞÞQf t,x t�tðtð ÞÞÞðð

þ
XN

j ¼ 1

pijPj

Z t

t�tðtÞ
f T x,xðxð ÞÞQf x,xðxð ÞÞdx: ð27Þ

Then, we can get

IV xðtð Þ,i,tÞr$T ðtÞFi$ðtÞ ð28Þ

where

Fi ¼

F1i Pi BiþDBið Þ Pi CiþDCið Þ

n �RiþQ 0

n n �sQ

2
64

3
75,

in which F1i ¼� AiþDAið Þ
T Pi�Pi AiþDAið Þ�

PN
j ¼ 1 pijPjþKlRiKl.

Hence, IV(x(t),i, t)o0 can be held by Fio0.
In order to dealt with the uncertainties described as the form

in (3) and (4), we can use the following approach:

Fi ¼PiþDPio0,

where

DPi ¼

�DAT
i Pi�PiDAi PiDBi PiDCi

n 0 0

n n 0

2
64

3
75:
Then Fi¼PiþDPio0 is equivalent to

PiþDPi ¼ L11GiðtÞL12þLT
12G

T
i ðtÞL

T
11o0

where L11 ¼ col PiMi 0 0
� �

, L12 ¼ �N1i N2i N3i
� �

.
From Lemma 1, the above matrix inequality holds for all Gi( t)

satisfying :GiðtÞ:r1 if and only if there exists a series of mode-
dependent positive scalars bi40, such that

Piþb
�1
i L11LT

11þbiL
T
12L12o0

that is,

Fi ¼

F2i PiBi�biN
T
1iN2i PiCi�biN

T
1iN3i PiMi

n �RiþQþbiN
T
2iN2i biN

T
2iN3i 0

n n �sQþbiN
T
3iN3i 0

n n n �biI

2
666664

3
777775o0 ð29Þ

where F2i ¼�AT
i Pi�PiAi�

PN
j ¼ 1 pijPjþKlRiKlþbiN

T
1iN1i.

Following the similar proof in Theorem 1, we can easily get the
main results of . This completes the Proof. &

When there are difficulties in solving (13), we can transform
(13) into the following conditions:

IoPios1I ð30Þ

0oQ os2I ð31Þ

c1 s1þts2kl

� 	
oe�aT c2 ð32Þ

with s140, s240.
For the uncertain MJNNs (1) with constant time-delays, which

can be described as t(t)¼t40, then in terms of LMIs, we obtain
the following sufficient condition for the stochastic FTB.

Theorem 3. Given a time-constant T40, the uncertain constant
time-delayed MJNNs (1) is stochastically robustly FTB with
respect to c1 c2 T

� �
, if there exists a positive constant a40,

a mode-dependent symmetric positive-definite matrix Pi40, a
mode-dependent diagonal matrix Ri40, symmetric positive-
definite matrix Q40, and mode-dependent scalars bi40, satisfy-
ing relations (30)–(32) and the following matrix inequality for all
iAL,

S2i PiBi�biN
T
1iN2i PiCi�biN

T
1iN3i PiMi

n �RiþQþbiN
T
2iN2i biN

T
2iN3i 0

n n �sQþbiN
T
3iN3i 0

n n n �biI

2
666664

3
777775: ð33Þ

Remark 3. Theorems 1 and 2 have presented the sufficient
condition of analyzing the FTB of MJNNs (1). The coupled LMIs
(12) (or (26)) and LMIs (30)–(32) are respect to Pi, Ri, Q, bi, c1, c2,
s1, s2, T, t and a. For given scalars c1, T and a, we can take c2 as
the optimal value and optimize over value c2. Similarly, we can fix
c2 and look for the maximum admissible c1 guaranteeing the FTB
of MJNNs in (1). By using the MATLAB LMIs Toolbox, it is
straightforward to check the feasibility of Theorems 1 and 2. In
order to illustrate the effectiveness of the developed techniques,
we will give two numerical examples about dynamic MJNNs (1) in
Section 4.

Remark 4. For the infeasible frequency methods for stochastic
dynamic MJNNs (1), finite-time stability or boundedness can be
considered as the extension concept of peak value or energy value
performance of the dynamical systems. Following the same lines
of the proof of Theorem 1, we can also get the sufficient FTB
condition for the uncertain MJNNs case. It should be observed out
that the novelty of the results in this paper pays more attention to
the nonlinear parameters and time-varying delays appearing in
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the MJNNs and the relevant stability analysis with respect to the
finite-time interval. Without consider the jumping parameters,
and the time-interval turns to infinite-time, the main results can
be reduced to [2,4,5,7] and the references therein.

4. Numerical examples
Example 1. Consider a class of MJNNs (1) with two operation
modes described as follows:

A1 ¼
2 0

0 1

� 

, B1 ¼

0:5 1

�0:2 0:5

� 

, C1 ¼

0:9 0:1

�0:1 0:1

� 

,

A2 ¼
3 0

0 2

� 

, B2 ¼

1:1 1

�0:2 0:1

� 

, C2 ¼

0:3 �0:8

0:1 0:2

� 

, Kl ¼ I2:

The mode switching is governed by a Markov chain that has the

following transition rate matrix:

P¼
�0:5 0:5

0:3 �0:3

� 

:

In this note, we choose the initial values for c1¼0.25, T¼2, a¼1

and describe the time-delays as tðtÞ ¼ 0:2U9cos t9. Since 0r9cost

9r1, we can get that tðtÞ ¼ 0:2. From (3), it follows that

s¼ inf
tZ0

1� _tðtð ÞÞ ¼ 0:8. By applying Theorem 1 and optimize over

value c2, we find tine-delayed MJNNs (1) is stochastically FTB

with respect to c1 c2 T
� �

with the minimal c2¼5.4296. The

solution of LMIs (12) and (30)–(32) is given by:

P1 ¼
1:0013 �0:0004

�0:0004 1:0118

� 

, P2 ¼

1:5736 0:8322

0:8322 2:2097

� 

,

Q ¼
0:3853 �0:0629

�0:0629 0:7538

� 

,

R1 ¼
1:0118 0

0 1:5736

� 

, R2 ¼

0:8322 0

0 2:2097

� 

:

Example 2. Consider two operation modes time-delayed MJNNs
(1) with uncertain parameters described as follows:

A1 ¼
3 0

0 3

� 

, B1 ¼

0:3 0:2

�0:2 0:3

� 

, C1 ¼

0:2 0:1

�0:1 0:1

� 

,

A2 ¼
2 0

0 2

� 

, B2 ¼

�0:4 0:3

0:5 0:1

� 

, C2 ¼

�0:3 0:2

0:1 0:2

� 

,

M1 ¼
�0:2 0:1

0:1 0:1

� 

, M2 ¼

�0:1 0:2

�0:1 �0:2

� 

, N11 ¼

0:2 0:5

�0:1 0:3

� 

,

N12 ¼
0:3 �0:1

0:2 �0:1

� 

, N21 ¼

0:4 0:2

�0:1 0:2

� 

, N22 ¼

0:1 �0:3

0:4 �0:2

� 

,

N31 ¼
0:2 �0:1

�0:2 0:3

� 

, N23 ¼

�0:1 0:1

0:2 �0:5

� 

, Kl ¼ I2:

With the same mode switching rates, initial values and time-

delays, we find tine-delayed MJNNs (1) is stochastically FTB with

respect to c1 c2 T
� �

with the minimal c2¼3.0093. The solution

of (26) and (30)–(32) is given by:

P1 ¼
1:4801 �0:1043

�0:1043 1:4768

� 

, P2 ¼

1:2959 0:2990

0:2990 1:3031

� 

,

Q ¼
0:0990 0:0476

0:0476 0:0886

� 

,

R1 ¼
1:4768 0

0 1:2959

� 

, R2 ¼

0:2990 0

0 1:3031

� 

:

5. Conclusions

In this paper, we have discussed the stochastically FTB pro-
blem for MJNNs with both time-delays and uncertain parameters.
By employing a Lyapunov–Krasovskii functional, the addressed
FTB analysis problem can also be converted into a convex
optimization problem, and a LMI approach has been utilized to
establish the sufficient conditions for the robust FTB for the
MJNNs, with or without parameter uncertainties. These condi-
tions can be readily checked by utilizing the Matlab LMI toolbox.
A numerical example has been provided to demonstrate the
usefulness of the proposed methods.
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